A Stochastic Approach to Linear Estimation in H∞

نویسنده

  • Brett Ninness
چکیده

This paper examines the problem of system identification from frequency response data. Recent approaches to this problem, known collectively as ‘Estimation in H ! ’, involve deterministic descriptions of noise corruptions to the data. In order to provide ‘worst-case’ convergence with respect to these deterministic noise descriptions, non-linear data algorithms are required. In contrast, this paper examines ‘worst-case’ estimation in H ! when the disturbances are subject to mild stochastic assumptions and linearity in the data algorithms is employed. Issues of convergence, error bounds, and model order selection are considered. ! 1998 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem

In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractiona...

متن کامل

Stochastic Non-Parametric Frontier Analysis

In this paper we develop an approach that synthesizes the best features of the two main methods in the estimation of production efficiency. Specically, our approach first allows for statistical noise, similar to Stochastic frontier analysis, and second, it allows modeling multiple-inputs-multiple-outputs technologies without imposing parametric assumptions on production relationship, similar to...

متن کامل

Capacity Drop Estimation Based on Stochastic Approach Applied to Tehran-Karaj Freeway

Existence of capacity drop phenomenon, as the difference between pre-queue and queue discharge flow rates, has been one of the controversial concepts of traffic engineering. Several researches have focused on capacity drop existence and also its estimation issues. This paper aims to estimate capacity drop based not only on a comparison between breakdown and queue discharge flow rates, but also ...

متن کامل

Confidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)

Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1998